конгруэнция - tradução para francês
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

конгруэнция - tradução para francês

ОТНОШЕНИЕ ЭКВИВАЛЕНТНОСТИ НА АЛГЕБРАИЧЕСКОЙ СИСТЕМЕ, СОХРАНЯЮЩЕЕСЯ ПРИ ОСНОВНЫХ ОПЕРАЦИЯХ
Конгруэнтность (алгебра); Конгруенция

конгруэнция         
ж. геом.
congruence
congruence singulière      
особая конгруэнция; сингулярная конгруэнция
congruence cyclique      
- циклическая конгруэнция

Definição

конгруенция
[эн], конгруенции, ·жен. (·лат. congruentia - Совпадение) (мат.). Совпадение геометрических фигур при наложении одной на другую.

Wikipédia

Конгруэнция

Конгруэнцией в общей алгебре называют отношение эквивалентности на алгебраической структуре (такой как группа, кольцо или векторное пространство), согласующееся с алгебраическими операциями, определёнными на указанной структуре. Согласованность означает, что выполнение операций над эквивалентными (относительно конгруэнции) элементами структуры даст также эквивалентные элементы. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую фактор-структуру со сходными операциями, носителем которой будет фактормножество, чьи элементы — классы эквивалентности исходной структуры по отношению к конгруэнции.

Основным примером конгруэнции является отношение сравнимости по модулю на множестве целых чисел. При заданном натуральном n (называемом модулем) говорят, что два целых числа a и b сравнимы по модулю n, если разность a – b делится на n или, что равносильно, a и b дают при делении на n равные остатки. Если числа a и b сравнимы по некоторому модулю n это обозначается a ≡ b (mod n). Например, числа 37 и 57 сравнимы по модулю 10 (37 ≡ 57 (mod 10)), поскольку 37 – 57 = −20 делится на 10 (это эквивалентно тому, что 37 и 57 дают при делении на 10 один и тот же остаток 7). Свойства сравнимости по модулю показывают, что, во-первых, сравнимость — отношение эквивалентности, и, во-вторых, что оно согласовано как со сложением так и с умножением целых чисел: если a1 ≡ b1 (mod n) и a2 ≡ b2 (mod n), то a1 + a2 ≡ b1 + b2 (mod n) и a1 · a2 ≡ b1 · b2 (mod n) для любых целых a1 , a2 , b1 , b2. Это значит, что над соответствующими классами эквивалентности — классами вычетов (по модулю n) — также выполнимы операции сложения и умножения, составляющие так называемую модульную арифметику: [a]n + [b]n = [a + b]n , [a]n · [b]n = [a · b]n ([x]n — класс целых чисел, сравнимых с числом x по модулю n). С точки зрения абстрактной алгебры это будет звучать так: сравнимость по модулю n есть конгруэнция на кольце целых чисел Z {\displaystyle \mathbb {Z} } , порождающая фактор-кольцо Z / n Z {\displaystyle \mathbb {Z} {\mathord {/}}n\mathbb {Z} }  — конечное кольцо вычетов по модулю n, — на котором выполняются операции модульной арифметики.